Tumor subclone identification with spatial regularization
Usage
FindClone(
obj,
ref,
ref.id = NULL,
tumor = NULL,
tumor.id = NULL,
lambda = NULL,
K = NULL,
max_iter = 500,
min_iter = 30,
epsilon = 5e-04,
seed = 12345678
)Arguments
- obj
a highSpaClone object
- ref
Character vector of reference (normal) labels.
- ref.id
Optional character vector of reference cell IDs.
- tumor
Optional character vector of tumor labels; if
NULL, all non-reference cells are used.- tumor.id
Optional vector of tumor cell IDs; if both
tumorandtumor.idareNULL, all non-reference cells are used.- lambda
Numeric; spatial regularization strength passed to
run_iter().- K
Integer; number of subclones (clusters). If
NULL, it should be set by the caller.- max_iter
Integer; maximum number of iterations.
- min_iter
Integer; minimum iterations before early stop.
- epsilon
Numeric; convergence threshold on relative objective change.
- seed
Integer; random seed.
Value
The input obj with:
@cnv.data: optimized CNV matrix (tumor cells × bins).@cluster:data.frame(cell.id, x, y, cell.label)wherecell.label∈"Clone 1", …,"Clone K".
Convergence and stopping
Same as FindTumor(): early stop on relative improvement < epsilon after min_iter,
stop on objective increase, or stop at max_iter.